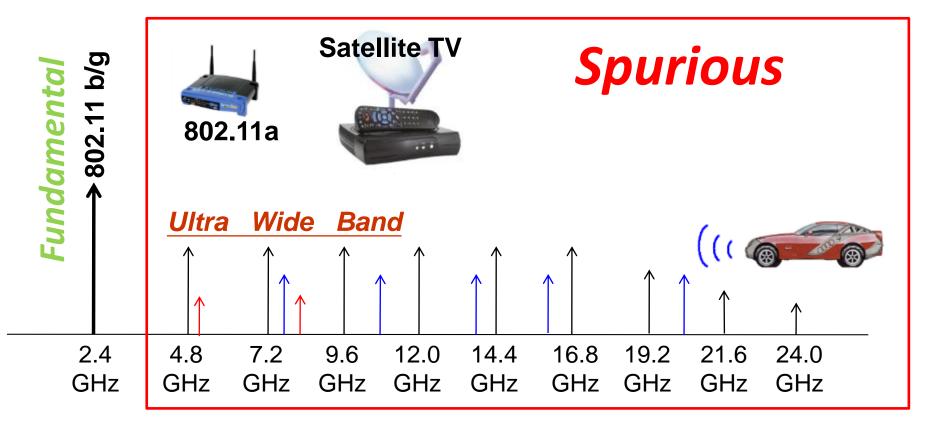
Radiated Spurious Emission Testing Jari Vikstedt

jari.vikstedt@ets-lindgren.com

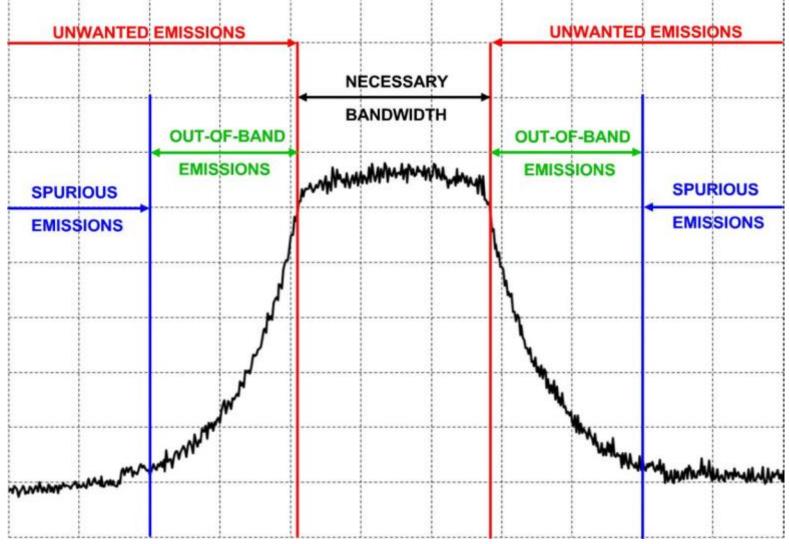
WWW.ETS-LINDGREN.COM

What is RSE?


RSE = radiated spurious emission

Radiated → Shielded, Anechoic Chamber Spurious → Intentional Radiator Emission → EMI Measurements

Spurious


Spurious, all emissions but the fundamental (carrier)
Spurious can be harmonics, oscillations, mixing terms

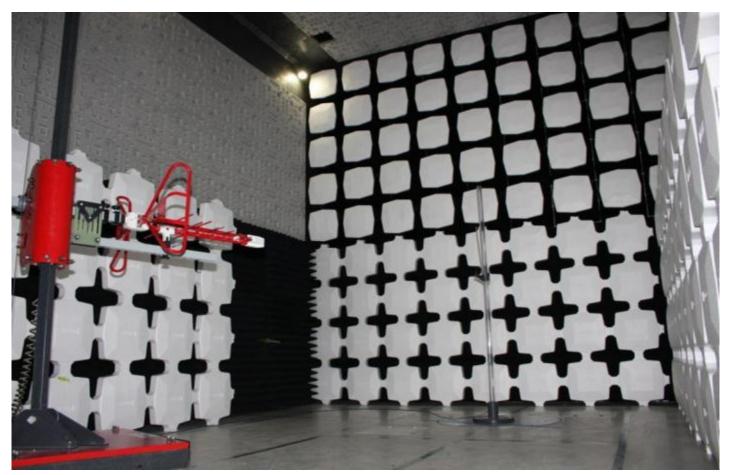
2.00

Spurious Domain

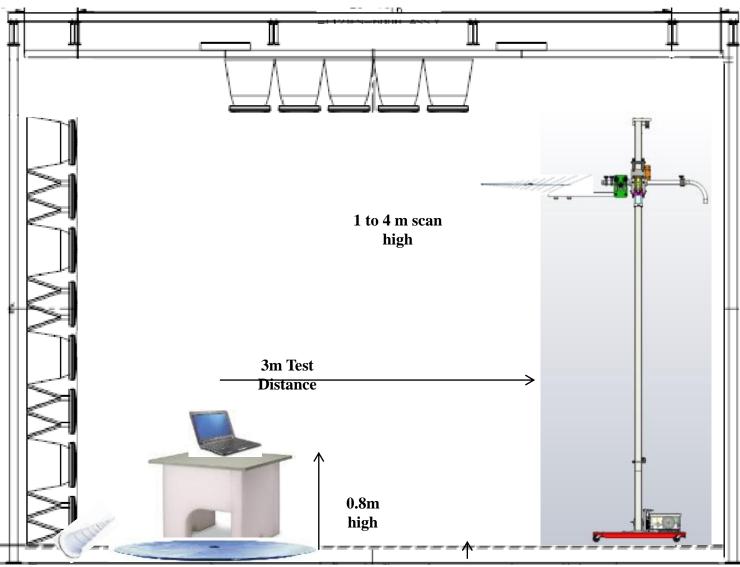
June 9th, 2015 Copyright ETS-Lindgren Inc.

Receiver vs. Spectrum analyzer

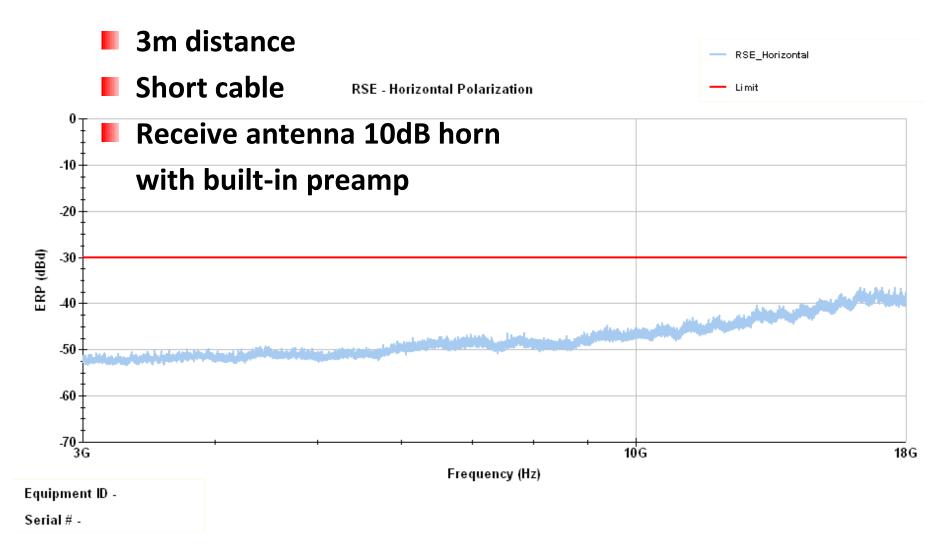
- Spurious Emission measurements differ from EMI measurements mainly in that BW's matching the useful signal have to be set on the receiver instead of the typical EMC bandwidths (e.g. 200 Hz, 9 kHz, 120 kHz).
- Also EMC BW's are referred to the 6 dB points of the IF filters, whereas the BW's for spurious emission measurements are referred to the 3 dB points.
- In spurious emission measurements PK detector is used in place of the QP detector.
- All these differences make it necessary that for spurious emission measurements a Spectrum Analyzer or Receiver with spectrum analyzer functionality to be used rather than a pure EMC test receiver


Typical RSE Standards

- FCC 15C/22/24/ (90)
- 3GPP standards define RSE for cellular technologies, such as 3GPP.51.010 for GSM
- ETSI EN 300 328 defines RSE for 2.4 GHz ISM band using spread spectrum modulation, up to 24 GHz
- ETSI EN 301 893 defines RSE for 5 GHz ISM band using spread spectrum modulation, up to 26 GHz
- ETSI EN 300 440 even defines RSE for equipments used to 40GHz, spurious measured to 100GHz
- Limit lines are given in dBm, not dBuV/m
 - This implies EIRP measurement
 - \rightarrow EIRP not function of test distance
 - ightarrow So, substitution calibration is required


FCC Chamber

FCC does not deviate from general ANSI C63.4 spec when measuring the RSE, but simply reinforces the use of "typical" 3-meter EMC chamber.



Semi Anechoic Chamber

Noise Floor in FCC 3 meter chamber

FCC

Intentional Emitters:

- f < 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
 - In some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device.

FCC Rules Part 22 and 24 requirement for radiated spurious emissions is as follows:

The ERP limit is –13dBm [derived from 43 +10log(P)]

2 2

FCC RBW/Limits

Rules FCC	/Re	-	uency Bandwidt	h	Power Limit
	Freq (MHz)	RBW	Freq (MHz)	RBW	(Ave.)
22.917 (850)	f_{low} - 1MHz $< f < f < f_{low}$ &	≥1% of	f≤f _{low} - 1MHz &	≥100 kHz	-13
24.238 (PCS); 27.53(g) (AWS)	$f_{up} < f < f_{up} + 1 MHz;$	BW	$f \ge f_{up} + 1$ MHz	≥1M Hz	dB <i>m</i>

FCC Spurious Testing, Example

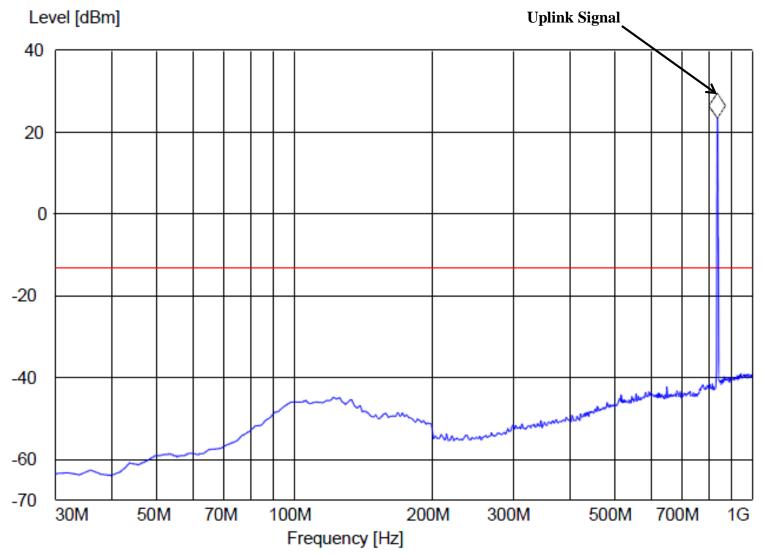
Connect the equipment

- If antenna element can be loaded with 50 ohm dummy load please do so or else take care not to overload the receiver/spectrum analyzer.
- Adjust the settings of the Radio Communication Tester to set the EUT to its maximum power at the required channel. NOTE, Requires communication antenna to maintain the link!
- Set the spectrum analyzer to measure peak hold.

Measure EMI

- a polarization (Horizontal or Vertical)
- 1-4m Scan
- Rotate EUT 0-360 degrees
- Record level (LVL) up to 10th harmonic

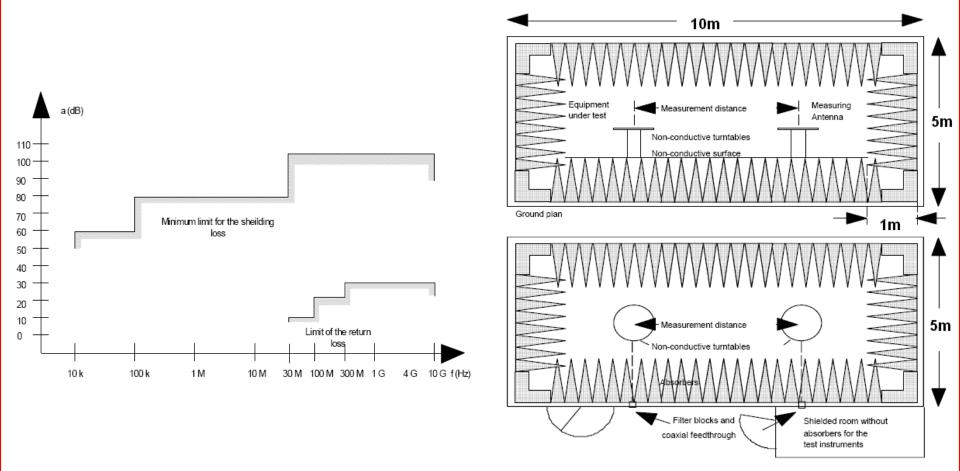
FCC Spurious Testing, Example


Perform Substitution Test

- Replace the EUT with a half wave dipole or known gain antenna.
- Substitution antenna should be at the same location as the EUT.
- Connect the known antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- Determine the level of spurious emissions using the following equation: Spurious (dBm) = LVL (dBm) + LOSS (dB)

Measurements are to be performed with the EUT set to the low, mid and high channel of each frequency band.

Example of FCC Spurious Test



June 9th, 2015 Copyright ETS-Lindgren Inc.

ETSI Chamber

The above mentioned standards clearly define the *Reflectivity* of absorber and chamber size, not chamber performance.

ETSI Chamber

ETSI Standard Basics

- EMI measured from 30MHz to 12.75GHz
- The receiving device is spectrum analyzer (3dB BW RBW), not EMI receiver (6dB BW RBW).
- No defined chamber performance test
- Only absorber requirement
- And suggested chamber size (10m x 5m x 5m)

2.2

ETSI RBW/VBW Settings

Here is to given one example.

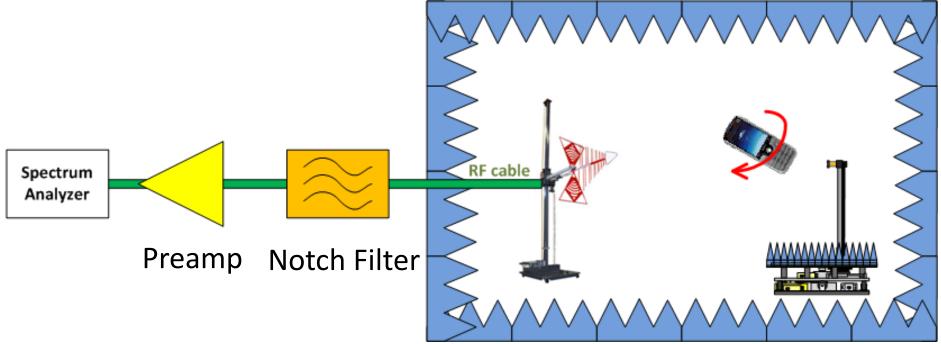
	GSM850 (C		(CH190)	GSM900) (CH62)	GSM1800) (CH700)	GSM1900	0 (CH661)			
	fL/fH	824	849	880	915	1710	1785	1850	1910			
	fo	83	6.6	90	2.4	174	17.8	1880				
RBW	VBW	fstart	fstop	fstart	fstop	fstart	fstop	fstart	fstop			
10k	30k	30	50	30	50	30	50	30	50			
100k	300k	50	500	50	500	50	500	50	500			
3MHz	3MHz	500	794	500	850	500	1680	500	1820			
1MHz	3MHz	794	804	850	860	1680	1690	1820	1830			
300k	1MHz	804	814	860	870	1690	1700	1830	1840			
100k	300k	814	824	870	880	1700	1710	1840	1850			
100k	300k	824	830.6	880	896.4	1710	1741.8	1850	1874			
30k	100k	830.6	834.8	896.4	900.6	1741.8	1746	1874	1878.2			
-	-	834.8	838.4	900.6	904.2	1746	1749.6	1878.2	1881.8			
30k	100k	838.4	842.6	904.2	908.4	1749.6	1753.8	1881.8	1886			
100k	300k	842.6	849	908.4	915	1753.8	1785	1886	1910			
100k	300k	849	859	915	925	1785	1795	1910	1920			
300k	1MHz	859	869	925	935	1795	1805	1920	1930			
1MHz	3MHz	869	879	935	945	1805	1815	1930	1940			
3MHz	3MHz	879	4000	945	4000	1815	4000	1940	4000			

ETSI Limits

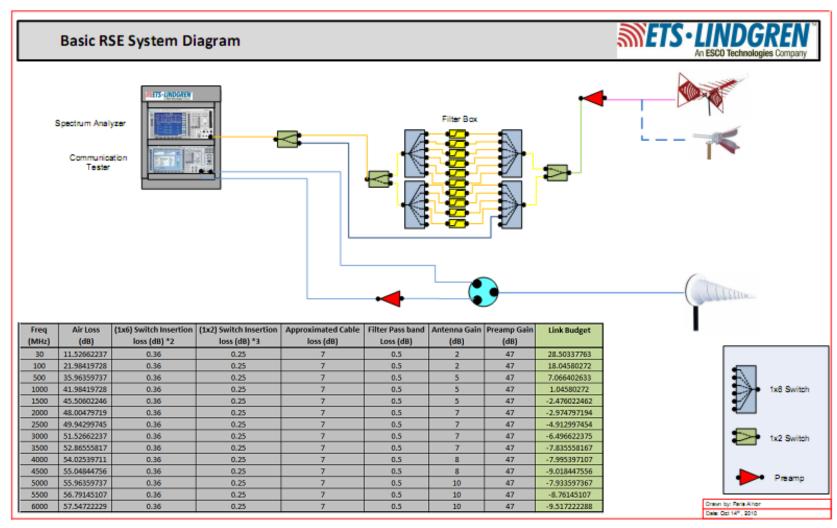
Harmonics are mostly limited to -30dBm (in dBd), or -27.85dBm (in dBi) [dBd = dBi – 2.15]

Freq. Range (MHz)	Limit (ERP, dBm)	RBW (kHz)
30 - 1000	-36	100
1000-12,750	-30	1000

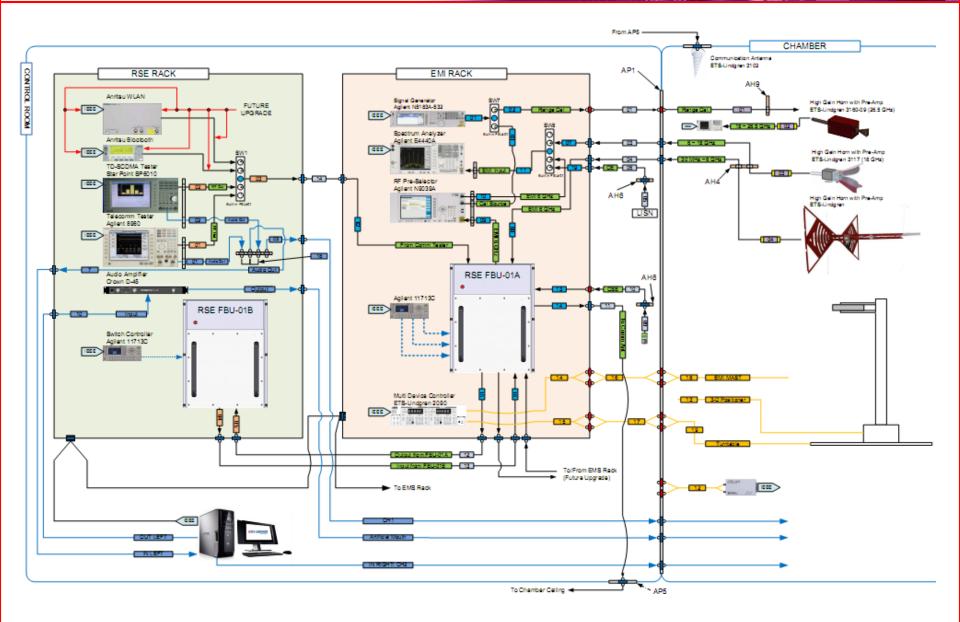
Freq. Range	GSM 850/900/1900 and GSM 400/700 (ERP in dBd)	GSM1800 (ERP in dBd)							
30-1000 MHz	-36 dBm	-36 dBm							
1000-4000 MHz	(see separate limits)								
1000-1710 MHz									
1710-1785 MHz	710-1785 MHz								
1785-4000 MHz									
Freq. Range	CDMA (Cell and PCS Bands)								
30 ≤f<1000 MH									
1 ≤f<12.75 GHz	-30 dBm								
	Exclusive Band near fc to be exempt								
Freq. Range	WCDMA Band I,II,IV,VIII	TD-SCDMA							
30 ≤f<1000 MH;	z -36 dBm	-36 dBm							
1 ≤f<12.75 GHz	. ≤f<12.75 GHz -30 dBm								
	Exclusive Band near fc to be exempt	2013.4-2021.4 MH							
Freq. Range	WiFi ISM Band and Bluetooth (EIRP limit)								
30 ≤f<1000 MHz	-36 dBm								
1 ≤f<12.75 GHz	-30 dBm								
1.8-1.9 GHz and	-47 dBm								


June 9th, 2015 Copyright ETS-Lindgren Inc.

5.15-5.3 GHZ

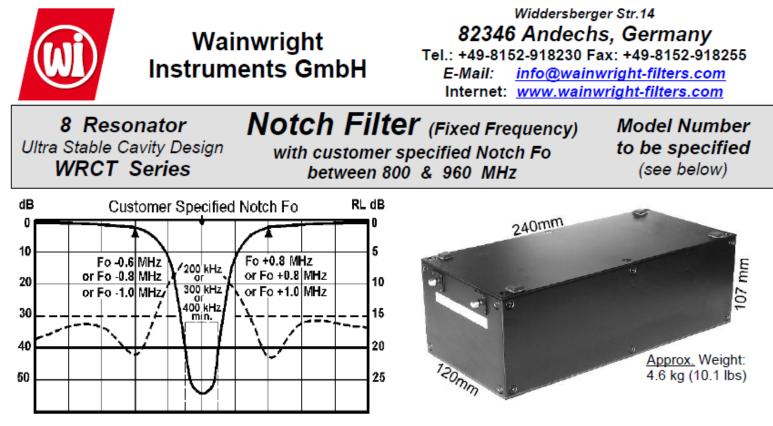

Basic ETSI RSE System Diagram

- 3D positioner for 3D measurement
- Notch Filter to remove fundamental carrier
- Preamp to increase dynamic range


Filters for EMC and Wireless

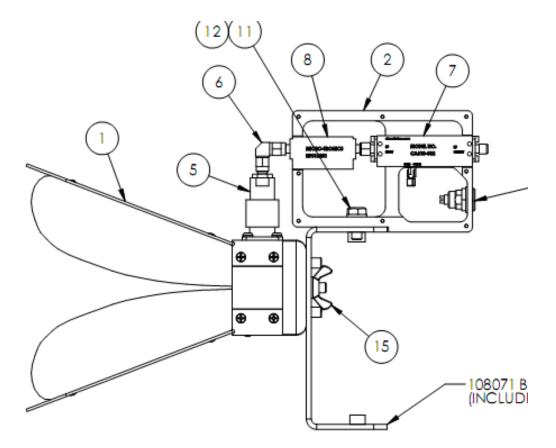
June 9th, 2015 Copyright ETS-Lindgren Inc.

2.00



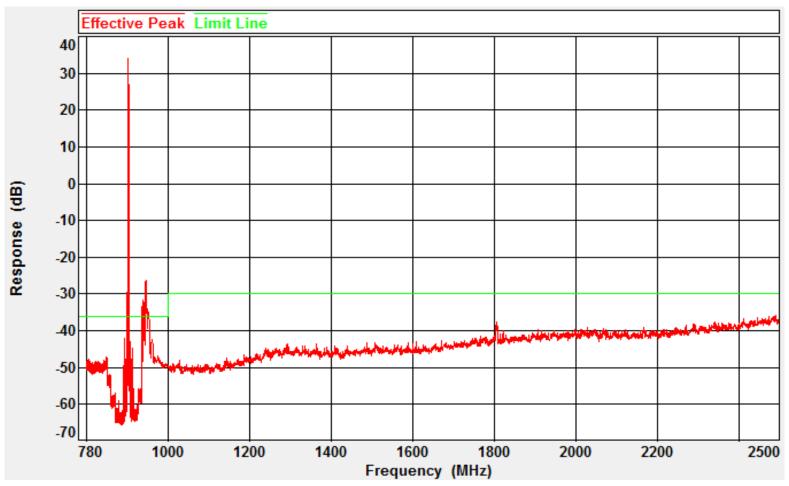
June 9th, 2015 Copyright ETS-Lindgren Inc.

Typical Notch Filter


- Very sharp rejection band 50dB rejections in 200kHz bandwidth
- To notch out the fundament which is strong enough to saturate receiver

Filters for EMC

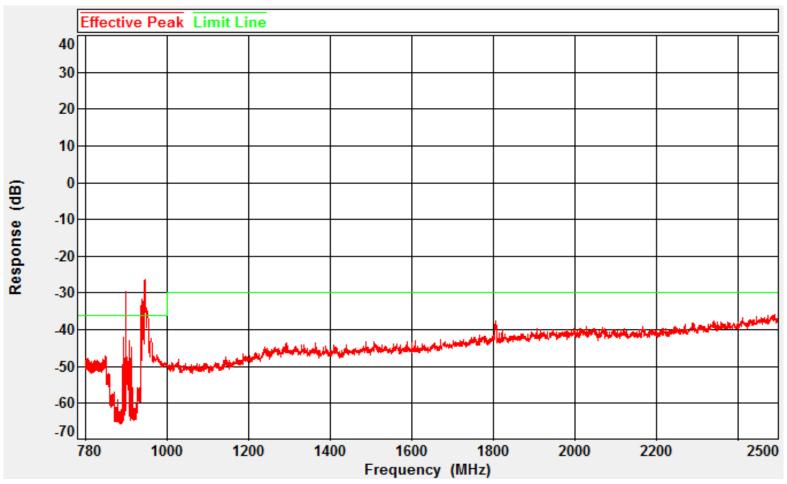
EMC Solution for 2.7GHz or 6 GHz to 18 GHz


HPF filter used in series with Pre amplifier

Protects preamp from overload.

Measured Graph

- Limit line for GSM900 steps at 1GHz
- Fundamental TX carrier is strong.



June 9th, 2015 Copyright ETS-Lindgren Inc.

Exclusion Band

The fundament of 902.4MHz is taken out by the BW of 3.6MHz.

June 9th, 2015 Copyright ETS-Lindgren Inc.

2.2

Table

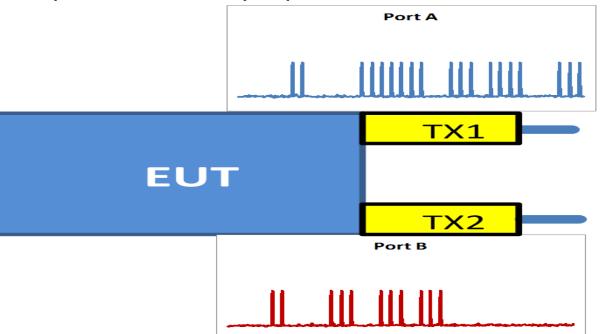
Table picks up peaks.

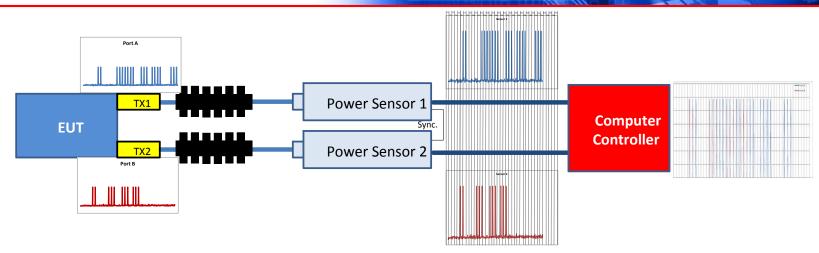
👰 <u>F</u> ile <u>E</u>	dit <u>E</u> quipr	ment <u>R</u> un	<u>T</u> ools <u>M</u>	<u>/</u> indow <u>H</u> e	əlp			
🗅 👻 🖻	- 🖪 🔠 🛿	B 🗟 🗖	s .		9 🗊 🔸			
Parameters	Graph Tab	ole 🛛 Raw Da	ta					
		2494.3	-38.75	-37.88	-38.47			
		2498.96	-37.67	-38.07	-37.73			
		2499.48	-36.55	-37.44	-37.70			
		2500	-35.47	-37.06	-37.27			
	Peak Points	Final	Peak Points		Peak Cut	Secondary Angle		
		Frequency (MHz)	Response (dB)	Frequency (MHz)	Cut	Angle (?		
		945.519	-26.33	945.519	1	180		
		943.876	-26.89	943.876	3	0		
		897.804	-29.60	897.804	1	90		
		040.010	-29.67	943.016	3	180		
		943.016	20.01	010.010				
		946.556	-30.35	946.556	2	90		

June 9th, 2015 Copyright ETS-Lindgren Inc.

ETSI 300 328 and 301 893

RF Output Power Measurement


- Consideration for MIMO (Multiple Input Multiple Output) devices are added.
- Special burst power sensor is required to perform the test
- Requires store a lot of data that is later post processed to get the output power


ETSI 300 328 and ETSI 301 893 Requirements

The ETSI standard defines simultaneously to be a minimum of 1 Mega-Samples per second (MS/s).

This requires the measurement system to be triggered "simultaneously" and acquire data every 1 µsec.

The multiple sensor measurements are combined in accordance with ETSI 300 328 and ETSI 301 893 The start and stop times of the individual burst must be recorded in order to determine the Power over the burst using the formula shown in the standard.

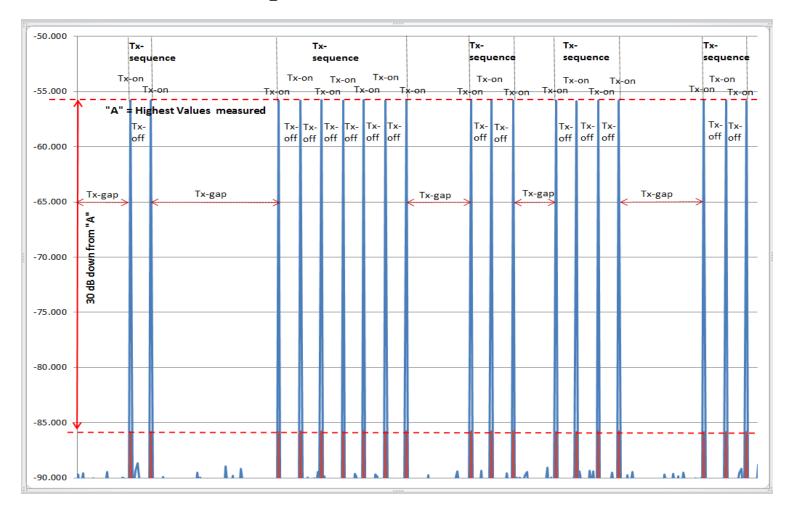
$$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} F sample(n)$$

Legend: P _{burst} = Power_{rms} level burst k = total number of samples n = sample number

What are we measuring?

Transmit-on (**Tx-on**) is where the device is transmitting

Transmitter-off (**Tx-off**) is where the transmitter is not transmitting and the Tx-off time is less than the minimum transmit gap characteristics


Transmit gap (Tx-gap) is defined by the manufacturer depending on the product application with guidance provided by the standard

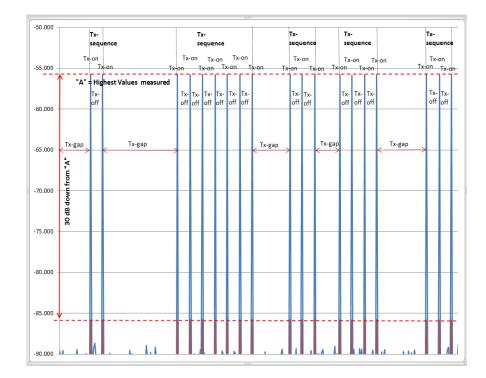
Transmit sequence (**Tx-sequence**) is defined the period where a single or multiple transmissions occur. The Tx-sequence follows a Tx-gap

2.2

Measurement Example - combined

What we Calculate?

RF Power


Power (e.i.r.p.) = A(Power Burst Levels) + G (Antenna Gain) + Y (Antenna Beamforming Gain)

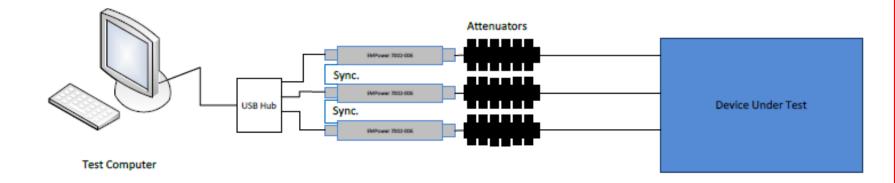
What we Calculate?

Duty Cycle

Is the sum of all Tx-On times between the end of first gap and the start of the last burst divided by the observation period.

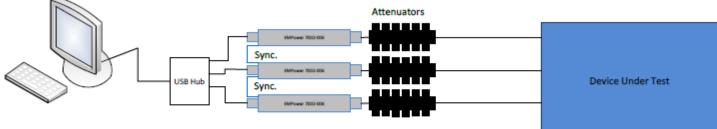
What we Calculate?

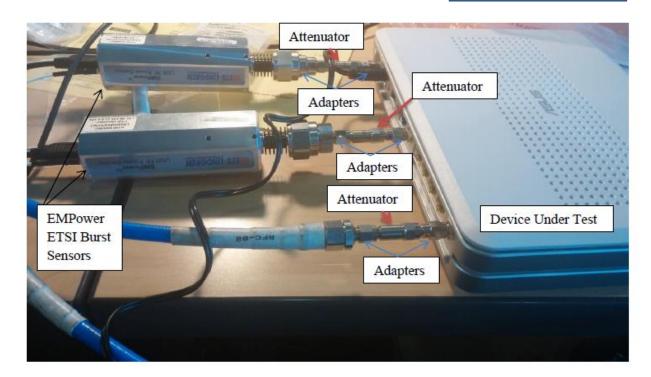
Medium Utilization


The goal here is to ensure equal access to the spectrum

$$Medium \ Utilization = \left(\frac{\text{RF Power } (mW)}{100(mW)}\right) * \ Duty \ Cycle$$

2.2

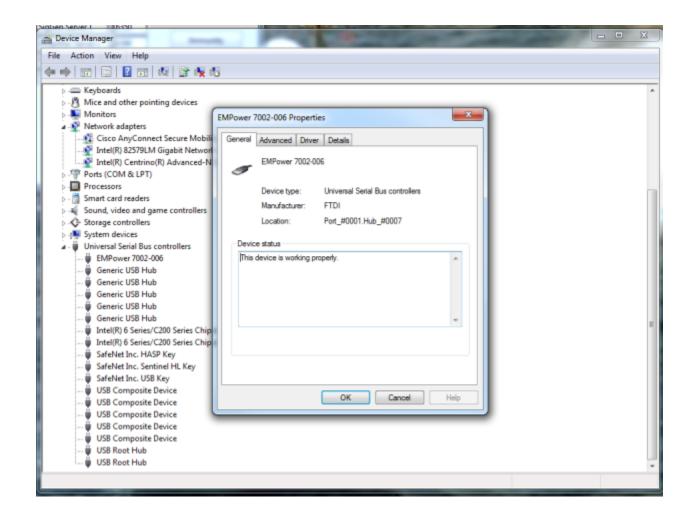

Test Configuration Overview



2.2

Configuration Overview

Test Computer



Configuration Sensor Connections

Configuration Sensor Connections

2.2

Software

EI2.	An ESCO Technologie		-	EM 30	EMPower ETSI Burst Measurement System EN 300 328 Compliant © 2014 ETS Lindgren																							
	and a set	Graph	Table																									
mer frequency			10				-																					Combined
Trigger Level			5-																									Sensor 1 🖟
Measure Time			0-																									
nple Rate (S/s)			-5-																									
Gap Time			-30 -																									
veshold Level			-15-																									
kssernbly Gain			-20-																									
dorming Gain	0 dB 🛬		-25-																									
Single Capture	Centinuous		-30																									
Connect	0isconnect		-35																									
			45-																									
Configure Servors	# Sensors		-50-																									
	USBID	2	-55																									
resor 1:			-60-																									
			-65-																									
			-70-																									
			-15-																									
			-80 - ,																									
			0.00	50:00	1001	10 15	50.00	200.00	256.80	300	1.08	350.00	406.0	0 45	100 5	6.00	SSE00 Time	600.00 (ms)	650,00	700.00	750	00 8	aciao	850,00	900.00	950.00	1080.80	
		_	181 () 	Full Scale		_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_		_	_
		_	urement V																									
		mean		p. 0.48m			Vin. Gep 1	ime 0 mo			Burst P	Nes 0																
		Medi	um Utilisati	an 0.%		Max. S	equence 1	ime 0 ms		Mea	surement	Time 0	1:00:00 PM	4														
			Duty Cy	de 0%				ous out	n			1	M/00/M	rr .														

2.2

QUESTIONS

